

Leibniz Institute for EAST AND SOUTHEAST EUROPEAN STUDIES



Income and Consumption approach in the estimation of the premature mortality economic burden within Covid-19 pandemics. Evidence from Post-Soviet space

### Vladimir Kozlov (IOS, Regensburg)

kozlov@ios-regensburg.de

\*The results for NTA distribution and demographic projections are achieved in cooperation with Russian NTA team (M. Denisenko and A. Nazarova),

Moldova NTA team (Centre for Demographic Research - CDR: O. Gagauz, V. Prohniţchi), Kyrgyzstan team (Ch. Seitov, G. Samohleb et. al), Serbian UNFPA country office (T. Anicic) in 2022-23

HEALTH, MORBIDITY, AND MORTALITY WORKING GROUP

European Association of Population Studies

21.09.2023



## Countries of our analysis and sources

- Post-Soviet space:
- Russia (population: 146.8 mln.) data from Rosstat and RusFMD + projections from InDem
- & Moldova (population: 2.6 mln.) data from CDR
- & Kyrgyzstan (population: 6.6 mln.) data from NSC of the Kyrgyz Republic

#### Balkans:

& Serbia (population: 6.9 mln) data from Stat Office of the Republic of Serbia + UNFPA Serbia



# What indicators do we need?

#### **Excess mortality:**

- & Based on the discrepancies between projected and actual population (Russia)
- & Based on the discrepancies between projected and actual mortality levels (Moldova)
- & Based on the differences between simple trend projected (trend for 2015-2019) and actual ASDRs: Kyrgyzstan and Serbia

#### **Economic costs of additional deaths:**

- & Based on national transfer accounts (each age has it own cost)
- ln this presentation we use data for consumption and income (the whole project works with transfers)
- Additionally data from non-paid labour (wages assigned to the time spent for the labour within a household)



#### Mortality burden estimation for the Covid-19 period (2020-2021) Russia:

- X The life expectancy -3.8 (women), -2.7 (men)
- Absolute numbers: -465 th. (women), -515 th. (men)

#### Moldova:

- X The life expectancy -2.1 (women), -1.6 (men)
- Absolute numbers: -5,44 th. (women), -5,15 th. (men)

#### Kyrgyzstan:

- ∑ The life expectancy +0.3 (women), -0.1 (men)
- Absolute numbers: 8,9 th. (women), 9,6 th. (men)

#### Serbia:

- X The life expectancy -2.4 (women), -3 (men)
- Absolute numbers: 55,5 th.\* incl 19,1 th. (women), 36,4 th. (men)

#### \* - for Serbia we do not have data for the economic burden by gender



# Data from 'Our World in Data' and other sources (2020-2021)

- & Absolute figures:
- Russia 1080 th.
- Moldova 16.4 th.,
- Kyrgyzstan 13.9 th.

Serbia - 52.2 th. (49.5 based on Arsenović, 2023)

- **&** Per 100 000:
- Russia 744
- Moldova -502
- Kyrgyzstan 210
- Serbia 757



#### **Discrepancies**





# The possible explanation of differences?

Methods:

- X For Russia and Moldova: compared the expected and real population after C-19
- Solution For Kyrgyzstan and Serbia: compared the trend and observed mortality (close to OwinD)

Differences in statistical data by sources:

- Solution For Moldova the problem could be in denominator (local specialists use 2.6 mln., international organizations up to 4 mln.)
- & For Kyrgyzstan it looks like a system error with denominator estimations

The life expectancy in Kyrgyzstan by the "official" life tables is debatable



# Mortality burden

Russian case as a master-class



# How was the "excess mortality" measured?

- 🔌 Literature see e.g. in Ourworldindata resource or Karlinsky & Kobak (2021) papers
- In Russia the estimations made by different teams are close (Kobak (2021), Timonin et. al (2022), Scherbov et. al (2022), Aburto et. al (2022), Schöley et. Al (2022)):
- in abs. figures about 1 mln. for the period 2020-21
- in life expectancy for both sexes -3.3: -1.8 and -1.5 years, or (from 73.3 to 70), the mortality occurs in economic active age as well:

The excess mortality distribution (from Scherbov et al. 2022)





The "excess mortality" by age groups? Potential economic

#### Life expectancy graph from Aburto et al. (2022) **losses**





# The decomposition of the life expectancy changes (2019 vs. 2021)





# How did we estimate C-19 losses for Russia?

We use the <u>difference between the demographic forecast</u> in the beginning of 2020 for the 1.1.2022 time point (without C-19 estimations)

And

- the **actual population** for the 1.1.2022 period of time (after C-19 waves)
- The difference between the middle variant of the forecast and the actual population is about **1** mln., that is close to the estimated excess mortality figures.
- Not only deaths but the other demographic processes are involved in the estimation (but fertility and migration did not change dramatically). The difference between actual and





## C-19 losses estimation comments

- Not only mortality, but possibly some fertility and migration changes (not the Russian case for 2020 and 2021)
- We take into consideration the demographic forecast at the eve of coronavirus for the short-term projection
- And (estimating the effect of the population structure change) differences between pre-covid and post-covid projections middle term effect



#### Further steps. Gender inclusion, and long-term prospectives

The Economic losses (ST)i = (Population actuali -Population expectedi) \* NTA Indicator per capitai

The difference between actual and hypothetical population



The Economic losses (LT)i = (Population forecasted before C-19i - Population forecasted after C-19i) \* NTA Indicator per capitai

The difference between projections (LT, decomposed by gender)





#### Visualisations for the other countries

#### **KYRGYZSTAN**





#### Vorname Nachname | Titel des Vortrags



#### Serbia

| 0      |     |     |       |       |       |       |       |       |       |       |       |       |       |       |       |       | _   | _ |
|--------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|---|
|        | 0-4 | 5-9 | 10-14 | 15-19 | 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | 60-64 | 65-69 | 70-74 | 75-79 | 80- | - |
| -5000  |     |     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |     |   |
| -10000 |     |     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |     |   |
| -15000 |     |     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |     |   |
| -20000 |     |     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |     |   |
| -25000 |     |     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |     |   |



#### How were these economic losses calculated?

- **National transfer accounts (NTA)**
- X Years of potential life lost (YPLL)
- X Time used for the household production lost



# National transfer accounts approach

- Current methodology:
- Mason, Lee (2009, 2010, 2011) and Mason, A.,
   Lee, R., Tung, A. C., Lai, M. S., & Miller, T.
   (2009) based on the problem of ageing

#### **Previously:**

- International transfers and savings and family as an investment (Kotlikoff 1989; Kotlikoff & Spivak 1981; Kotlikoff & Summers 1981)
- Life cycle and finance Ando & Modigliani (1963) + intergenerational transfers Modigliani (1986)
- & Valkowich (1971) economic-demographic pyramids
- & Samuelson (1975) optimal social security
- № Lee (2001) historical prospective

#### DATA



https://www.ntaccounts.org/web /nta/show/

NTA Project for more than 100 countries



# Basic equation $C(x) - Y^{l}(x) = \tau^{+}(x) - \tau^{-}(x) + Y^{A}(x) - S(x)$

- C(x) Consumption at the age x;  $Y^{l}(x)$  - Yield (Income) from the labour at the age x;  $C(x) - Y^{l}(x) - Life$  cycle deficit (LCD)
- $Y^{A}(x)$  Yield (income) from the assets at the age x; S(x) - Savings at the age x;
- $\tau$  + (x) Transfers received at the age x;  $\tau$  - (x) - Transfers sent at the age x

For the burden estimation we use LCD

Leibniz Institute for EAST AND SOUTHEAST EUROPEAN STUDIES

#### Example: Russian profiles (dynamics) IN 2019 RUBLES





# The calculations of economic losses is based on the simple assumption

- **W** The Economic losses: = (Demographic losses:) \* NTA Indicator per capita:
- 2 Calculated for each 10-year group (i), afterwards summarized
- NTA indicators are taken from "preCovid-19" 2019 year <u>(losses as a % of the NTA indicator before C-19)</u>
- ★ The NTA Indicators used are: Income, Consumption
- **&** Losses by sex (apart from Serbia)
- More important are relative figures, we use them for the comparisons with the alternative estimations (% of GDP)
- We do not use discounts (unless it is specified)



# Cross-countries comparisons (Russia, Moldova, Kyrgyzstan, Serbia)

- We do not have the detailed figures about the demographic projections apart from Russia
- We have only macroeconomic data (SNA, 2019) and profiles (Moldova 2019 and Kyrgyzstan 2017)
- Solution For Moldova we have fully distributed gender-based NTA, for Kyrgyzstan only for Income and private Consumption (in future we can fully distribute)

So we calculate: the losses in NTA indicators (Income, Consumption, Private and Public transfers) within pandemics (2020-21) as % from the Aggregated indicator in 2019:

**Σ**(Excess deaths<sub>i</sub> \* NTA indicator per capita<sub>i</sub>)

Aggregate NTA indicator<sup>2019</sup>



# Example: The results based on NTA (gender based), Russian profiles (2019), per capita, Rubles

We calculate the same indicators, but separately for the genders !Limitation: the public tr (sent) is equally distributed





Leibniz Institute for EAST AND SOUTHEAST EUROPEAN STUDIES

#### Moldova NTA gender profiles





## Kyrgyzstan NTA gender profiles (LCD only)





# Serbia NTA profiles (LCD only)

←Income ←Consumption





# Why is it important to measure losses based on NTA (sex based)?

- 1 Income and especially consumption are not equal to 0 at the older ages
- & Consumption could be the highest at the older ages (consumption is an important part of GDP), by SNA it is higher than Income
- 2 Due to the macro-controllers usage, the NTA methodology is closer to careful economic burden estimation
- & Covid-19 "excess mortality" changed a population structure, so the middle and potentially long-term economic effect can be visible

Leibniz Institute for EAST AND SOUTHEAST EUROPEAN STUDIES

The population structures are different (Income & Consumption aggregated)











#### The results based on the other countries NTA

The data available:

- **&** Russia NTA 2019 (per capital and aggregate) by sex
- **Moldova NTA 2019 (per capital and aggregate) by sex**
- **Serbia NTA 2019 (per capita and aggregate)**
- X Kyrgyzstan NTA profiles based on data from National Statistical Committee for 2017, the SNA statistics for 2019 is used for aggregate figures calculation by sex



# The results (economic losses) based on NTA indicators (Russia)

2 On the common picture (Life Circle Deficit in absolute figures, mln.) we see almost nothing



However aggregated age groups are more interesting, and we use only middle variant of demographic forecast



# 3 countries losses based at the same methodology by gender (Income, Consumption), % from 2019



■ Consumption 65+ ■ Consumption All ■ Income 65+ ■ Income All



# 4 countries losses based at the same methodology, total (Income, Consumption), % from 2019



■0-19 ■20-64 ■65+ ■All



### Cross-country comparisons, losses as % GDP

|             |            | 2019  | 2020+2021 |
|-------------|------------|-------|-----------|
|             | Russia     | 0.140 | 0.071     |
| Incomo      | Moldova    | 0.069 | 0.034     |
| income      | Kyrgyzstan | 0.072 | 0.034     |
|             | Serbia     | 0.121 | 0.058     |
|             | Russia     | 0.417 | 0.211     |
| Concumption | Moldova    | 0.327 | 0.163     |
| Consumption | Kyrgyzstan | 0.291 | 0.147     |
|             | Serbia     | 0.555 | 0.265     |

GDP for all the countries in 2019 prices



# Alternative estimations (The human capital approach is used): Russian YPLL

Using YPLL (Years of Potential Life Lost) (Gardner & Sanborn, 1990) regarding C-19 (excess mortality) in Russia for 2020-2021, with discounts and inflation rate, based on 5 and 10-age groups wages by gender.

#### For Russia, Standartised YPLL per 1000

- 2019: 249.2
- 2020: 285.1
- 2021: 318.8

The difference is assumed to be C-19 excess mortality



### Some alternative estimations

Using YPLL (Years of Potential Life Lost) (Gardner & Sanborn, 1990) regarding C-19 (excess mortality) in Russia for 2020-2021, with discounts and inflation rate, based on 5 and 10-age groups wages. The human capital approach is used

|      |        |          | % of GDP      |
|------|--------|----------|---------------|
| Year | Gender | % of GDP | (labour part) |
| 2020 | male   | 0.69     | 0.32          |
| 2020 | female | 0.26     | 0.12          |
| 2020 | both   | 0.95     | 0.44          |
| 2021 | male   | 0.99     | 0.40          |
| 2021 | female | 0.62     | 0.26          |
| 2021 | both   | 1.61     | 0.66          |



Leibniz Institute for EAST AND SOUTHEAST EUROPEAN STUDIES

# Non-market production

#### Russian results only (for Kyrgyzstan the results are double checking, for Serbia and Moldova data is under construction)

- We look at the non-market production as it was in Hanley et. al (2022) papers and by NTTA (time transfers) approach:
- The non-paid labour is estimated in minutes and distributed by each age
- The 'wage' is assigned based by occupations, age and gender



#### Russia: The results based on time spent, minutes per day (2019)





### Non-market work and excess mortality

Hanley at al (2022) estimations for EU with proxy good approach (PGA) - Unpaid work of employed and non-employed individuals valued by the shadow prices:

- Alle costs in the beginning of pandemics were the highest in the 55-64 age group (paid work for employed), and for female costs were the highest in the 65-74 age group especially in S. Europe (unpaid work of non-employed)
- Limitations: unpaid work in institutional social care units for older persons? not a Post-Soviet space case

The advantages from NTTA: not only the unpaid work as it is, but a balance: production - consumption. (no over- or underestimation)



# Market (NTA indicator 'Income') and Non-market (in shadow prices - 2019 wages) production, mln. Rub



Losses (bln.):

- Market: 112 (male) + 50 (female),
- Non-market: 103 (male) + 140 (female)



### Cross-country comparisons, losses as % GDP

|             |            | 2019  | 2020+2021 |
|-------------|------------|-------|-----------|
|             | Russia     | 0.140 | 0.071     |
| Incomo      | Moldova    | 0.069 | 0.034     |
| income      | Kyrgyzstan | 0.072 | 0.034     |
|             | Serbia     | 0.121 | 0.058     |
|             | Russia     | 0.417 | 0.211     |
| Consumption | Moldova    | 0.327 | 0.163     |
| Consumption | Kyrgyzstan | 0.291 | 0.147     |
|             | Serbia     | 0.555 | 0.265     |
| Non-market  |            |       |           |
| Production  | Russia     | 0.147 | 0.075     |

| Russia YPLL |        |          |               |  |  |  |  |
|-------------|--------|----------|---------------|--|--|--|--|
|             |        |          |               |  |  |  |  |
| Year        | Gender | % of GDP | (labour part) |  |  |  |  |
| 2020        | male   | 0.69     | 0.32          |  |  |  |  |
| 2020        | female | 0.26     | 0.12          |  |  |  |  |
| 2020        | both   | 0.95     | 0.44          |  |  |  |  |
| 2021        | male   | 0.99     | 0.40          |  |  |  |  |
| 2021        | female | 0.62     | 0.26          |  |  |  |  |
| 2021        | both   | 1.61     | 0.66          |  |  |  |  |

Hanly (2022) within 9 weeks in the beginning of C-19 pandemics the losses were (% GDP):

| Country     | Paid+Unpaid | Paid  |  |  |
|-------------|-------------|-------|--|--|
| Spain       | 0.112       | 0.036 |  |  |
| Netherlands | 0.09        | 0.047 |  |  |
| Italy       | 0.05        | 0.028 |  |  |



#### If we look at the balance (Production - Consumption, rub per day)

----production male

production female
consumption female

And multiply it for the general mortality losses (mln. per year).



∎ male ≡ female



Vladimir Kozlov | NTA and NTTA approach in the estimation of the premature mortality burden. Evidence from Post-Soviet space



### The results based on NTA (middle term)

- X The results of the age structures change due to mortality
- **&** Forecasts until 2035:
- 1. Already used demographic projection from 2020
- 2. New demographic forecast from 2022 (took into consideration the C-19 changes)



# The results based on NTA (middle term)

Differences between 2 demographic projections in Income, consumption, transfers balances (% changes between projections)



■ Inc ■ Cons ■ Cons (pub) ■ Cons (pr)



#### Decomposing differences to the end of the period in bln. rubbles





The difference for Income:-4.1% (male) and -2.8% (female) Consumption: -4.0% (male) and -4.8% (female)



#### **Further work**

- X There is still a work with the balancing NTA by sex and NTTA for all the countries
- 2020 and 2021 age profiles for the better economic losses estimation to see the economic effect (not just demographic for the ratios)
- Non-paid work for the losses by causes of death
- & Macroeconomic effect
- ℵ Profiles by other SES