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Introduction

Why is it important to know about mortality at extreme ages?

test possible evolutionary theories
determine whether a limit to human lifespan exists

it’s fun & captures public interest and media attention!

The risks of death above age 105 remain quite uncertain

scarcity of observations
often lack of completeness
low reliability of reported age

Since 20+ years a concerted effort to overcome these issues:

[www.supercentenarians.org]

individual data on deaths 105+, i.e. semi-supercentenarians
data from 13 countries with reliable civil registry
inclusion of all deaths occurring within a population
all deaths subjected to a strict age validation procedure

!! Recent challenge in obtaining new individual data !!
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Aim of the study

Research questions

1 map out time trends for semi-supercentenarians

2 unravel the conundrum of the mortality plateau

3 describe the age pattern of mortality without imposing any hypotheses

4 assess eventual sex and cohort differences in mortality above age 105

Data

We have recently received updated data from France
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14,467 Deaths 105+

Women 91% – Men 9%

Years: 1978-2023

Cohorts: 1870-1918
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Some descriptive facts: deaths by age
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Some descriptive facts: deaths by cohort
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Some descriptive facts: deaths by year
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Observation scheme in words

No matter which model we have in mind, we need to address
the observation scheme

Exact date of birth and date of death ⇒ no interval censoring

We need to deal with:

Left truncation: Individuals may enter the dataset only after
reaching age 105

Right censoring: Individuals may exit the dataset before dying
(this can occur when analyzing a selected period, not here)

Right Truncation: Only individuals who died by the end of
2023 are included

Potential bias from incomplete population representation:
Exclusion of individuals who may die after 2023, as they will
only be included once they pass away
In practice, for earlier cohorts, all deaths are observed, i.e.,
extinct cohorts
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Model the complete dataset
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A
B

C

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Right
truncation

A 1870.3 1980.0 109.7 1978.0 107.7 153.7
B 1887.4 1999.2 111.8 1992.4 105.0 136.6
C 1913.7 2022.0 108.3 2018.7 105.0 110.3
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of birth
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of death
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D 1915.5 ? ? 2020.5 105.0 –
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Likelihood contributions

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Right
truncation

A 1870.3 1980.0 109.7 1978.0 107.7 153.7
B 1887.4 1999.2 111.8 1992.4 105.0 136.6
C 1913.7 2022.0 108.3 2018.7 105.0 110.3

ℓA = P(X = 109.7 | X > 107.7,X ≤ 153.7) =
f (109.7)

S(107.7)− S(153.7)

ℓB = P(X = 111.8 | X > 105.0,X ≤ 136.6) =
f (111.8)

S(105)− S(136.6)

ℓC = P(X = 108.3 | X > 105.0,X ≤ 110.3) =
f (108.3)

S(105)− S(110.3)

We can safely assume that S(153.7) and S(136.6) are both equal to 0

We can condition everything on surviving to age 105
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Likelihood contributions
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Generalizing the assumption

All cohorts that reach at least age 115 by 2024 are extinct
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Modelling parametric models

Two main options for the mortality hazard:

Constant : h(x) = a
Gompertz: h(x) = a ebx
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Effect of disregarding right truncation
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Effect of disregarding right truncation
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Including sex and/or cohort

Check for sex differences in a proportional hazards setting:

hi (x | sexi , cohorti ) = h0(x) ·


eβsex ·sexi

eβcohort ·cohorti

eβsex ·sexi+βcohort ·cohorti

where the baseline h0(x) is either Constant or Gompertz

Gompertz baseline with only sex as a covariate selected by AIC

Parameter Estimated 95% CI

a 0.56572 [0.55132, 0.58011]
b 0.05231 [0.04001, 0.06461]

βsex 0.18511 [0.12291, 0.24730]
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Piecewise constant hazard model in a nutshell

Split time axis into m + 1 pre-defined intervals: (τj−1, τj ]

In each interval the hazard is constant λj > 0

For each intervals Ij = (τj−1, τj ] we define:

eij time under observation of indiv. i during Ij

δij event indicator of indiv. i in Ij

For a given interval j (with fix covariate profile):

n∑
i

δij = yj (# of deaths)
n∑
i

eij = ej (total exposure time)

For a sequence of m+1 different intervals/ages: yj ∼ P(µj · ej)
Without any further assumptions: µ̂ = y

e , i.e. death rates

Issues:
estimated hazard function will be discontinuous
subjectivity in the choice of the breakpoints
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Piecewise constant hazard model in action
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Can we do better? Yes!

Recipe of estimate a non-parametric hazard:

Divide the age axis into many equally spaced intervals
Construct yj (observed events) and ej (exposure) in each interval
Assume yj ∼ P(µj · ej)
Impose smoothness by adding a penalty term

An equation for an iterative algorithm

η = (W + λD ′D)−1(y − µ⊙ e + η ⊙ µ⊙ e)

with W = diag(µ⊙ e) and D is a difference matrix

Key Advantages:

Number of intervals is irrelevant if m is large
Objective criteria (e.g., AIC/BIC) guide λ selection
Analytical uncertainty quantification
Prior knowledge is included in the model by adjusting the penalty
term (Constant vs. Gompertz)

Current issue: we cannot deal with right truncation
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Non-parametric hazard in action
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Including sex in a smooth setting

A “proportional hazard” framework with a smooth relative risk
function:

hF (x) = s(x)

hM(x) = hF (x) · eδ(x)

s(x) : non-parametric hazard
δ(x) : generic smooth function over age

δ(x) describes age-specific sex differences in log-mortality

eδ(x) can be interpreted as an age-specific relative risk

“Some” adjustments in the previous equation
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Log-mortality by sex
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δ : sex difference in log-mortality
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eδ : hazard sex ratio
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Concluding remarks

A sharp increase in the number of individuals over age 105

New French data confirms previous findings:

no evidence of a mortality plateau
continued sex disadvantage even at extreme ages
no significant cohort effect observed

The non-parametric approach

provides a mortality description without assumptions
reveals an increasing sex disadvantage from age 108

Outlook:

Quality check of individual data for England & Wales
Ongoing efforts to gather data for Spain, Italy, Netherlands and
Japan
Significant difficulties in accessing and publishing individual data:
exploring the use of validated, aggregated data
Address right truncation in non-parametric models
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Camarda et al.

Mortality above age 105
New data, new models

Thanks for your attention.
Comments and questions?
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Modelling a selected period

Aim to model, for instance, years 2000-2010
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A
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C D

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Exit
time

Event
indicator

A 1890.6 2001.1 110.5 2000.0 109.4 110.5 1
B 1894.2 2012.2 118.0 2000.0 105.8 116.8 0
C 1897.3 2005.4 108.1 2002.3 105.0 108.1 1
D 1902.0 2014.0 112.0 2007.0 105.0 109.0 0
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Likelihood contributions

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Exit
time

Event
indicator

A 1890.6 2001.1 110.5 2000.0 109.4 110.5 1
B 1894.2 2012.2 118.0 2000.0 105.8 116.8 0
C 1897.3 2005.4 108.1 2002.3 105.0 108.1 1
D 1902.0 2014.0 112.0 2007.0 105.0 109.0 0

ℓA = P(X = 110.5 | X > 109.4) =
f (110.5)

S(109.4)

ℓB = P(X > 116.8 | X > 105.8) =
S(116.8)

S(105.8)

ℓC = P(X = 108.1 | X > 105.0) =
f (108.1)

S(105.0)

ℓD = P(X > 109.0 | X > 105.0) =
S(109.0)

S(105.0)

We can condition everything on surviving to age 105
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Likelihood contributions

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Exit
time

Event
indicator

A 1890.6 2001.1 110.5 2000.0 109.4 110.5 1
B 1894.2 2012.2 118.0 2000.0 105.8 116.8 0
C 1897.3 2005.4 108.1 2002.3 105.0 108.1 1
D 1902.0 2014.0 112.0 2007.0 105.0 109.0 0

ℓA = P(X = 5.5 | X > 4.4) =
f (5.5)

S(4.4)

ℓB = P(X > 11.8 | X > 0.8) =
S(11.8)

S(0.8)

ℓC = P(X = 3.1) = f (4.1)

ℓD = P(X > 4.0) = S(4.0)

We can condition everything on surviving to age 105
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Modelling parametric models

Two main options for the mortality hazard:

Constant : h(x) = a
Gompertz: h(x) = a ebx

Full dataset assuming all individuals are right-truncated:

Model
Parameters
estimates

95% CI Log-likelihood AIC

Constant a 0.61445 [0.60332, 0.62559] -19795.56 39593.13

Gompertz
a 0.57603 [0.56183, 0.59024]

-19766.71 39537.42
b 0.04992 [0.03751, 0.06232]

Full dataset assuming cohorts born before 1909 are extinct:

Model
Parameters
estimates

95% CI Log-likelihood AIC

Constant a 0.61523 [0.60414, 0.62633] -19797.68 39597.36

Gompertz
a 0.57564 [0.56146, 0.58981]

-19767.06 39538.13
b 0.05063 [0.03835, 0.06291]

What if we extend our assumption beyond the 1909 cohort?
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Including sex and/or cohort

Check for sex differences in a proportional hazards setting:

hi (x | sexi , cohorti ) = h0(x) ·


eβsex ·sexi

eβcohort ·cohorti

eβsex ·sexi+βcohort ·cohorti

where the baseline h0(x) is either Constant or Gompertz

Covariate(s) β Estimated 95% CI AIC

sex βsex 0.17573 [ 0.11317, 0.23828] 39571.10
cohort βcohort -0.00201 [-0.00414, 0.00013] 39595.89

βsex 0.17563 [ 0.11271, 0.23855]

C
o
n
st
an

t

sex+cohort
βcohort -0.00205 [-0.00417, 0.00007]

39569.51

sex βsex 0.18511 [ 0.12291, 0.24730] 39508.02
cohort βcohort -0.00032 [-0.00255, 0.00190] 39540.04

βsex 0.18492 [ 0.12288, 0.24695]

G
o
m
p
er
tz

sex+cohort
βcohort -0.00031 [-0.00174, 0.00112]

39509.94

Gompertz baseline with only sex as a covariate selected by AIC
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Sex in a non-parametric setting: few equations

Let’s vectorize deaths and exposures for females and males

y = [yF , yM ]′ and y = [eF , eM ]′

Model linear predictor: η = [ηF ,ηM ]′ = Xβ, where

X =

[
Im 0m×m

Im Im

]
and β = [ηF , δ]

′

The iterative process to estimate β is given by

β̃ = (X ′ W X + P)−1X ′ W z

where z = y−µ⊙e
µ⊙e + η and W = diag(µ⊙ e)

The penalty term enforces smoothness of both η and δ:

P =

[
ληF

D ′D
λδD ′D

]
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