Mortality above age 105 New data, new models

Giancarlo Camarda¹ France Meslé¹ Svitlana Poniakina¹ Laurent Toussaint² Jacques Vallin¹ Jean-Marie Robine³

¹Institut national d'études démographiques (INED)

²Independent consultant

³Institut national de la santé et de la recherche médicale (INSERM)

EAPS Working Group "Health, Morbidity and Mortality" workshop Bilbao, September 25-27, 2024

EAPS WG "Health, Morbidity and Mortality"

イロト イヨト イヨト イヨト

- Why is it important to know about mortality at extreme ages?
 - test possible evolutionary theories
 - determine whether a limit to human lifespan exists

EAPS WG "Health, Morbidity and Mortality"

<日

<</p>

- ined 🎯 🏶 Inserm 👩
- Why is it important to know about mortality at extreme ages?
 - test possible evolutionary theories
 - determine whether a limit to human lifespan exists
 - it's fun & captures public interest and media attention!

- Why is it important to know about mortality at extreme ages?
 - test possible evolutionary theories
 - determine whether a limit to human lifespan exists
 - it's fun & captures public interest and media attention!
- The risks of death above age 105 remain quite uncertain
 - scarcity of observations
 - often lack of completeness
 - low reliability of reported age

ined 🍈 🖐 Inserm

- Why is it important to know about mortality at extreme ages?
 - test possible evolutionary theories
 - determine whether a limit to human lifespan exists
 - it's fun & captures public interest and media attention!
- The risks of death above age 105 remain guite uncertain
 - scarcity of observations
 - often lack of completeness
 - low reliability of reported age

• Since 20+ years a concerted effort to overcome these issues: **(0)**

```
www.supercentenarians.org
```

International Database on Longevity

- individual data on deaths 105+, i.e. semi-supercentenarians
- data from 13 countries with reliable civil registry
- inclusion of all deaths occurring within a population
- all deaths subjected to a strict age validation procedure

- 4 回 ト 4 三 ト 4 三 ト

ined 🌘 🖐 Inserm

- Why is it important to know about mortality at extreme ages?
 - test possible evolutionary theories
 - determine whether a limit to human lifespan exists
 - it's fun & captures public interest and media attention!
- The risks of death above age 105 remain guite uncertain
 - scarcity of observations
 - often lack of completeness
 - low reliability of reported age
- Since 20+ years a concerted effort to overcome these issues: **(0)**

```
www.supercentenarians.org
```

ined 🍈 🖐 Inserm

International Database on Longevity

- individual data on deaths 105+, i.e. semi-supercentenarians
- data from 13 countries with reliable civil registry
- inclusion of all deaths occurring within a population
- all deaths subjected to a strict age validation procedure
- !! Recent challenge in obtaining new individual data !!

Aim of the study

Research questions

- 1 map out time trends for semi-supercentenarians
- 2 unravel the conundrum of the mortality plateau
- Output describe the age pattern of mortality without imposing any hypotheses
- assess eventual sex and cohort differences in mortality above age 105

Aim of the study

Research questions

- map out time trends for semi-supercentenarians
- 2 unravel the conundrum of the mortality plateau
- (a) describe the age pattern of mortality without imposing any hypotheses
 - assess eventual sex and cohort differences in mortality above age 105

Data

• We have recently received updated data from France

- 14,467 Deaths 105+
- Women 91% Men 9%

・ロット 全部 マイロット

- Years: 1978-2023
- Cohorts: 1870-1918

Some descriptive facts: deaths by age

EAPS WG "Health, Morbidity and Mortality"

Some descriptive facts: deaths by cohort

EAPS WG "Health, Morbidity and Mortality"

▲ □ ▶ ▲ □ ▶ ▲ □

Some descriptive facts: deaths by year

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• No matter which model we have in mind, we need to address the observation scheme

3

- No matter which model we have in mind, we need to address the observation scheme
- Exact date of birth and date of death \Rightarrow no interval censoring

EAPS WG "Health, Morbidity and Mortality"

イロト 人間ト イヨト イヨト

5

- No matter which model we have in mind, we need to address the observation scheme
- Exact date of birth and date of death \Rightarrow no interval censoring
- We need to deal with:
 - Left truncation: Individuals may enter the dataset only after reaching age 105

- 4 回 ト 4 ヨ ト 4 ヨ ト

ined (🔘 🌵 Inserm

- No matter which model we have in mind, we need to address the observation scheme
- Exact date of birth and date of death \Rightarrow no interval censoring
- We need to deal with:
 - Left truncation: Individuals may enter the dataset only after reaching age 105
 - **Right censoring**: Individuals may exit the dataset before dying (this can occur when analyzing a selected period, not here)

(1) マン・ション・

ined 🍈 🖐 Inserm

- No matter which model we have in mind, we need to address the observation scheme
- $\bullet\,$ Exact date of birth and date of death \Rightarrow no interval censoring
- We need to deal with:
 - Left truncation: Individuals may enter the dataset only after reaching age 105
 - **Right censoring**: Individuals may exit the dataset before dying (this can occur when analyzing a selected period, not here)
 - **Right Truncation**: Only individuals who died by the end of 2023 are included
 - Potential bias from incomplete population representation: Exclusion of individuals who may die after 2023, as they will only be included once they pass away
 - In practice, for earlier cohorts, all deaths are observed, i.e., extinct cohorts

(日)

ined 🍈 🖐 Inserm

Model the complete dataset

Years

	Date	Date	Age	Date	Entry	
	of birth	of death	at death	of entry	time	
А	1870.3	1980.0	109.7	1978.0	107.7	
В	1887.4	1999.2	111.8	1992.4	105.0	
С	1913.7	2022.0	108.3	2018.7	105.0	

ined 🔞 🌵 Inserm 🚺

Model the complete dataset

Years

	Date	Date	Age	Date	Entry	Right
	of birth	of death	at death	of entry	time	truncation
А	1870.3	1980.0	109.7	1978.0	107.7	153.7
В	1887.4	1999.2	111.8	1992.4	105.0	136.6
С	1913.7	2022.0	108.3	2018.7	105.0	110.3

EAPS WG "Health, Morbidity and Mortality"

ined (@) 🐘 Inserm (())

Model the complete dataset

Years

	Date	Date	Age	Date	Entry	Right
	of birth	of death	at death	of entry	time	truncation
А	1870.3	1980.0	109.7	1978.0	107.7	153.7
В	1887.4	1999.2	111.8	1992.4	105.0	136.6
С	1913.7	2022.0	108.3	2018.7	105.0	110.3
D	1915.5	?	?	2020.5	105.0	_

EAPS WG "Health, Morbidity and Mortality"

ined 🎯 🌵 Inserm 👩

EAPS WG "Health, Morbidity and Mortality"

ined 🎯 🖐 Inserm	@	l
-----------------	---	---

	Date	Date	Age	Date	Entry	Right
	of birth	of death	at death	of entry	time	truncation
А	1870.3	1980.0	109.7	1978.0	107.7	153.7
В	1887.4	1999.2	111.8	1992.4	105.0	136.6
С	1913.7	2022.0	108.3	2018.7	105.0	110.3

 $\ell_A = P(X = 109.7 \mid X > 107.7, X \le 153.7) = \frac{f(109.7)}{S(107.7) - S(153.7)}$

 $\ell_B = P(X = 111.8 \mid X > 105.0, X \le 136.6) = \frac{f(111.8)}{S(105) - S(136.6)}$

 $\ell_C = P(X = 108.3 | X > 105.0, X \le 110.3) = \frac{f(108.3)}{S(105) - S(110.3)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EAPS WG "Health, Morbidity and Mortality"

	Date	Date	Age	Date	Entry	Right
	of birth	of death	at death	of entry	time	truncation
А	1870.3	1980.0	109.7	1978.0	107.7	153.7
В	1887.4	1999.2	111.8	1992.4	105.0	136.6
С	1913.7	2022.0	108.3	2018.7	105.0	110.3

 $\ell_A = P(X = 109.7 \mid X > 107.7, X \le 153.7) = \frac{f(109.7)}{S(107.7) - S(153.7)}$

 $\ell_B = P(X = 111.8 \mid X > 105.0, X \le 136.6) = \frac{f(111.8)}{S(105) - S(136.6)}$

 $\ell_C = P(X = 108.3 \mid X > 105.0, X \le 110.3) = \frac{f(108.3)}{S(105) - S(110.3)}$

• We can safely assume that S(153.7) and S(136.6) are both equal to 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Date	Date	Age	Date	Entry	Right
	of birth	of death	at death	of entry	time	truncation
А	1870.3	1980.0	109.7	1978.0	107.7	153.7
В	1887.4	1999.2	111.8	1992.4	105.0	136.6
С	1913.7	2022.0	108.3	2018.7	105.0	110.3

$$\ell_A = P(X = 109.7 \mid X > 107.7) = \frac{f(109.7)}{S(107.7)}$$

$$\ell_B = P(X = 111.8 \mid X > 105.0) = \frac{f(111.8)}{S(105)}$$

 $\ell_C = P(X = 108.3 \mid X > 105.0, X \le 110.3) = \frac{f(108.3)}{S(105) - S(110.3)}$

• We can safely assume that S(153.7) and S(136.6) are both equal to 0

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

	Date	Date	Age	Date	Entry	Right
	of birth	of death	at death	of entry	time	truncation
А	1870.3	1980.0	109.7	1978.0	107.7	153.7
В	1887.4	1999.2	111.8	1992.4	105.0	136.6
С	1913.7	2022.0	108.3	2018.7	105.0	110.3

$$\ell_A = P(X = 4.7 \mid X > 2.7) = \frac{f(4.7)}{S(2.7)}$$
$$\ell_B = P(X = 6.8) = f(6.8)$$
$$\ell_C = P(X = 3.3 \mid X \le 5.3) = \frac{f(3.3)}{1 - S(5.3)}$$

• We can safely assume that S(153.7) and S(136.6) are both equal to 0

• We can condition everything on surviving to age 105

3

Generalizing the assumption

• All cohorts that reach at least age 115 by 2024 are extinct

EAPS WG "Health, Morbidity and Mortality"

イロト イヨト イヨト ・

э

Generalizing the assumption

• All cohorts that reach at least age 115 by 2024 are extinct

Cohorts: 1870–1908 Right truncation can be safely disregarded Cohorts: 1909–1918 Right truncation needs to be accounted for

EAPS WG "Health, Morbidity and Mortality"

< 1 k

Modelling parametric models

- Two main options for the mortality hazard:
 - Constant : h(x) = a
 - Gompertz: $h(x) = a e^{bx}$

EAPS WG "Health, Morbidity and Mortality"

EAPS WG "Health, Morbidity and Mortality"

la et al. Mortality above age 105. New data, new models

イロト 不得下 イヨト イヨト

10

э

EAPS WG "Health, Morbidity and Mortality"

< □ > < 同 > < 回 > < 回 > < 回 >

10

э

EAPS WG "Health, Morbidity and Mortality"

イロト イポト イヨト イヨト

э

ined () 🗄 Inserm

EAPS WG "Health, Morbidity and Mortality"

イロト イポト イヨト イヨト

10

э

ined 🔞 🗄 Inserm

Gompertz parameters

EAPS WG "Health, Morbidity and Mortality"

Including sex and/or cohort

• Check for sex differences in a proportional hazards setting:

$$h_i(x \mid \text{sex}_i, \text{cohort}_i) = h_0(x) \cdot \begin{cases} e^{\beta_{sex} \cdot \text{sex}_i} \\ e^{\beta_{cohort} \cdot \text{cohort}_i} \\ e^{\beta_{sex} \cdot \text{sex}_i + \beta_{cohort} \cdot \text{cohort}_i} \end{cases}$$

where the baseline $h_0(x)$ is either Constant or Gompertz

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Including sex and/or cohort

• Check for sex differences in a proportional hazards setting:

$$h_i(x \mid \text{sex}_i, \text{cohort}_i) = h_0(x) \cdot \begin{cases} e^{\beta_{\text{sex}} \cdot \text{sex}_i} \\ e^{\beta_{\text{cohort}} \cdot \text{cohort}_i} \\ e^{\beta_{\text{sex}} \cdot \text{sex}_i + \beta_{\text{cohort}} \cdot \text{cohort}_i} \end{cases}$$

where the baseline $h_0(x)$ is either Constant or Gompertz

Gompertz baseline with only sex as a covariate selected by AIC

Parameter	Estimated	95% CI
а	0.56572	[0.55132, 0.58011]
Ь	0.05231	[0.04001, 0.06461]
β_{sex}	0.18511	[0.12291, 0.24730]

EAPS WG "Health, Morbidity and Mortality"

・ 同 ト ・ ヨ ト ・ ヨ ト

Including sex and/or cohort

• Check for sex differences in a proportional hazards setting:

$$h_i(x \mid \text{sex}_i, \text{cohort}_i) = h_0(x) \cdot \begin{cases} e^{\beta_{\text{sex}} \cdot \text{sex}_i} \\ e^{\beta_{\text{cohort}} \cdot \text{cohort}_i} \\ e^{\beta_{\text{sex}} \cdot \text{sex}_i + \beta_{\text{cohort}} \cdot \text{cohort}_i} \end{cases}$$

where the baseline $h_0(x)$ is either Constant or Gompertz

• Gompertz baseline with only sex as a covariate selected by AIC

Piecewise constant hazard model in a nutshell ing the insermination of t

• Split time axis into m+1 pre-defined intervals: (τ_{i-1}, τ_i)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Piecewise constant hazard model in a nutshell indefinition

- Split time axis into m + 1 pre-defined intervals: $(\tau_{j-1}, \tau_j]$
- In each interval the hazard is constant $\lambda_j > 0$
Piecewise constant hazard model in a nutshell ined 🍥 🗄 Inserm 🍈

- Split time axis into m+1 pre-defined intervals: (τ_{i-1}, τ_i)
- In each interval the hazard is constant $\lambda_i > 0$
- For each intervals $I_i = (\tau_{i-1}, \tau_i]$ we define:
 - time under observation of indiv. *i* during I_i e_{ii}
 - δ_{ii} event indicator of indiv. *i* in I_i

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Piecewise constant hazard model in a nutshell ined 🍈 🖐 Inserm 👩

- Split time axis into m+1 pre-defined intervals: (τ_{i-1}, τ_i)
- In each interval the hazard is constant $\lambda_i > 0$
- For each intervals $I_i = (\tau_{i-1}, \tau_i]$ we define:
 - time under observation of indiv. *i* during I_i e_{ii}
 - δ_{ii} event indicator of indiv. *i* in I_i
- For a given interval *j* (with fix covariate profile):

$$\sum_{j=1}^{n} \delta_{ij} = y_j \quad (\# \text{ of deaths}) \qquad \sum_{j=1}^{n} e_{ij} = e_j \quad (\text{total exposure time})$$

- 本間 ト イヨ ト イヨ ト 三 ヨ

Piecewise constant hazard model in a nutshell india in

- Split time axis into m+1 pre-defined intervals: $(\tau_{j-1}, \tau_j]$
- In each interval the hazard is constant $\lambda_j > 0$
- For each intervals $I_j = (\tau_{j-1}, \tau_j]$ we define:
 - e_{ij} time under observation of indiv. *i* during I_j
 - δ_{ij} event indicator of indiv. *i* in I_j
- For a given interval *j* (with fix covariate profile):

$$\sum_{i}^{n} \delta_{ij} = y_j \quad (\# \text{ of deaths}) \qquad \sum_{i}^{n} e_{ij} = e_j \quad (\text{total exposure time})$$

• For a sequence of m+1 different intervals/ages: $y_j \sim \mathcal{P}(\mu_j \cdot e_j)$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Piecewise constant hazard model in a nutshell ined 🎯 🖶 Inserm 👩

- Split time axis into m+1 pre-defined intervals: $(\tau_{i-1}, \tau_i]$
- In each interval the hazard is constant $\lambda_i > 0$
- For each intervals $I_i = (\tau_{i-1}, \tau_i]$ we define:
 - time under observation of indiv. *i* during I_i e_{ii}
 - δ_{ii} event indicator of indiv. *i* in I_i
- For a given interval *j* (with fix covariate profile):

$$\sum_{i}^{n} \delta_{ij} = y_j \quad (\# \text{ of deaths}) \qquad \sum_{i}^{n} e_{ij} = e_j \quad (\text{total exposure time})$$

- For a sequence of m+1 different intervals/ages: $y_i \sim \mathcal{P}(\mu_i \cdot e_i)$
- Without any further assumptions: $\hat{\mu} = \frac{y}{e}$, i.e. death rates

Piecewise constant hazard model in a nutshell ined 🎯 🏶 Inserm 👩

- Split time axis into m+1 pre-defined intervals: $(\tau_{i-1}, \tau_i]$
- In each interval the hazard is constant $\lambda_i > 0$
- For each intervals $I_i = (\tau_{i-1}, \tau_i]$ we define:
 - time under observation of indiv. *i* during I_i e_{ii}
 - δ_{ii} event indicator of indiv. *i* in I_i
- For a given interval *j* (with fix covariate profile):

$$\sum_{i}^{n} \delta_{ij} = y_j \quad (\# \text{ of deaths}) \qquad \sum_{i}^{n} e_{ij} = e_j \quad (\text{total exposure time})$$

- For a sequence of m+1 different intervals/ages: $y_i \sim \mathcal{P}(\mu_i \cdot e_i)$
- Without any further assumptions: $\hat{\mu} = \frac{y}{e}$, i.e. death rates
- Issues:
 - estimated hazard function will be discontinuous
 - subjectivity in the choice of the breakpoints

EAPS WG "Health, Morbidity and Mortality"

イロト イヨト イヨト イヨト

э

ined 🎯 🐘 Inserm 🕻 🍈

ined 🎯 🐘 Inserm 🚺 🍈

French cohorts 1870-1909

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

French cohorts 1870-1909

EAPS WG "Health, Morbidity and Mortality"

< □ > < □ > < □ > < □ > < □ > < □ >

French cohorts 1870-1909

EAPS WG "Health, Morbidity and Mortality"

< □ > < □ > < □ > < □ > < □ > < □ >

- Recipe of estimate a non-parametric hazard:
 - Divide the age axis into many equally spaced intervals
 - Construct y_i (observed events) and e_i (exposure) in each interval
 - Assume $y_i \sim \mathcal{P}(\mu_i \cdot e_i)$
 - Impose smoothness by adding a penalty term

ined 🎯 🏶 Inserm 👩

- Recipe of estimate a non-parametric hazard:
 - Divide the age axis into many equally spaced intervals
 - Construct y_j (observed events) and e_j (exposure) in each interval
 - Assume $y_j \sim \mathcal{P}(\mu_j \cdot e_j)$
 - Impose smoothness by adding a penalty term
- An equation for an iterative algorithm

$$\boldsymbol{\eta} = (\boldsymbol{W} + \lambda \boldsymbol{D}' \boldsymbol{D})^{-1} (\boldsymbol{y} - \boldsymbol{\mu} \odot \boldsymbol{e} + \boldsymbol{\eta} \odot \boldsymbol{\mu} \odot \boldsymbol{e})$$

with $\pmb{W} = extsf{diag}(\pmb{\mu} \odot \pmb{e})$ and \pmb{D} is a difference matrix

ined 🎯 🏶 Inserm 👩

- Recipe of estimate a non-parametric hazard:
 - Divide the age axis into many equally spaced intervals
 - Construct y_j (observed events) and e_j (exposure) in each interval
 - Assume $y_j \sim \mathcal{P}(\mu_j \cdot e_j)$
 - Impose smoothness by adding a penalty term
- An equation for an iterative algorithm

$$oldsymbol{\eta} = (oldsymbol{W} + \lambda oldsymbol{D}'oldsymbol{D})^{-1}(oldsymbol{y} - oldsymbol{\mu} \odot oldsymbol{e} + oldsymbol{\eta} \odot oldsymbol{\mu} \odot oldsymbol{e})$$

with $oldsymbol{W} = extsf{diag}(oldsymbol{\mu}\odotoldsymbol{e})$ and $oldsymbol{D}$ is a difference matrix

- Key Advantages:
 - Number of intervals is irrelevant if *m* is large
 - Objective criteria (e.g., AIC/BIC) guide λ selection
 - Analytical uncertainty quantification
 - Prior knowledge is included in the model by adjusting the penalty term (Constant vs. Gompertz)

ヘロト 不得 トイヨト イヨト 二日

ined 🍈 🖐 Inserm

- Recipe of estimate a non-parametric hazard:
 - Divide the age axis into many equally spaced intervals
 - Construct y_i (observed events) and e_i (exposure) in each interval
 - Assume $y_i \sim \mathcal{P}(\mu_i \cdot e_i)$
 - Impose smoothness by adding a penalty term
- An equation for an iterative algorithm

$$oldsymbol{\eta} = (oldsymbol{W} + \lambda oldsymbol{D}'oldsymbol{D})^{-1}(oldsymbol{y} - oldsymbol{\mu} \odot oldsymbol{e} + oldsymbol{\eta} \odot oldsymbol{\mu} \odot oldsymbol{e})$$

with $\boldsymbol{W} = \text{diag}(\boldsymbol{\mu} \odot \boldsymbol{e})$ and \boldsymbol{D} is a difference matrix

- Key Advantages:
 - Number of intervals is irrelevant if *m* is large
 - Objective criteria (e.g., AIC/BIC) guide λ selection
 - Analytical uncertainty quantification
 - Prior knowledge is included in the model by adjusting the penalty term (Constant vs. Gompertz)
- Current issue: we cannot deal with right truncation

French cohorts 1870-1909

French cohorts 1870-1909

EAPS WG "Health, Morbidity and Mortality"

< □ > < □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ > < □ >

EAPS WG "Health, Morbidity and Mortality"

Camarda et al.

al. Mortality above age 105. New data, new models

• A "proportional hazard" framework with a smooth relative risk function:

$$h_F(x) = s(x)$$

$$h_M(x) = h_F(x) \cdot e^{\delta(x)}$$

- s(x) : non-parametric hazard
- $\delta(x)$: generic smooth function over age

く 白 ト く ヨ ト く ヨ ト

• A "proportional hazard" framework with a smooth relative risk function:

$$h_F(x) = s(x)$$

$$h_M(x) = h_F(x) \cdot e^{\delta(x)}$$

- s(x) : non-parametric hazard
- $\delta(x)$: generic smooth function over age
- $\delta(x)$ describes age-specific sex differences in log-mortality

く 白 ト く ヨ ト く ヨ ト

• A "proportional hazard" framework with a smooth relative risk function:

$$\begin{array}{lll} h_F(x) &=& s(x) \\ h_M(x) &=& h_F(x) \cdot e^{\delta(x)} \end{array}$$

- s(x) : non-parametric hazard
 δ(x) : generic smooth function over age
- $\delta(x)$ describes age-specific sex differences in log-mortality
- $e^{\delta(x)}$ can be interpreted as an age-specific relative risk

- 本語 医 本 臣 医 一 臣

 A "proportional hazard" framework with a smooth relative risk function:

$$h_F(x) = s(x)$$

$$h_M(x) = h_F(x) \cdot e^{\delta(x)}$$

- s(x) : non-parametric hazard • $\delta(x)$: generic smooth function over age
- $\delta(x)$ describes age-specific sex differences in log-mortality
- $e^{\delta(x)}$ can be interpreted as an age-specific relative risk
- "Some" adjustments in the previous equation

- 本間 ト イヨ ト イヨ ト 三 ヨ

Log-mortality by sex

ined 🔞 🌵 Inserm 👔 🍈

French cohorts 1870-1909

EAPS WG "Health, Morbidity and Mortality"

Log-mortality by sex

ined 🔞 🌵 Inserm 👔 🍈

French cohorts 1870-1909

EAPS WG "Health, Morbidity and Mortality"

δ : sex difference in log-mortality

e^{δ} : hazard sex ratio

French cohorts 1870-1909

• A sharp increase in the number of individuals over age 105

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- A sharp increase in the number of individuals over age 105
- New French data confirms previous findings:
 - no evidence of a mortality plateau
 - continued sex disadvantage even at extreme ages
 - no significant cohort effect observed

< 回 > < 回 > < 回 >

- A sharp increase in the number of individuals over age 105
- New French data confirms previous findings:
 - no evidence of a mortality plateau
 - continued sex disadvantage even at extreme ages
 - no significant cohort effect observed
- The non-parametric approach
 - provides a mortality description without assumptions
 - reveals an increasing sex disadvantage from age 108

A 回下 A 三下 A 三下

ined 🍈 🖐 Inserm

- A sharp increase in the number of individuals over age 105
- New French data confirms previous findings:
 - no evidence of a mortality plateau
 - continued sex disadvantage even at extreme ages
 - no significant cohort effect observed
- The non-parametric approach
 - provides a mortality description without assumptions
 - reveals an increasing sex disadvantage from age 108
- Outlook:
 - Quality check of individual data for England & Wales
 - Ongoing efforts to gather data for Spain, Italy, Netherlands and Japan
 - Significant difficulties in accessing and publishing individual data: exploring the use of validated, aggregated data
 - Address right truncation in non-parametric models

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ined 🍈 🖐 Inserm

CAMARDA ET AL.

Mortality above age 105 New data, new models

Thanks for your attention. Comments and questions?

International Database on Longevity

EAPS WG "Health, Morbidity and Mortality"

Camarda et al. Mortality above age 105. New data, new models

- ロ ト - 4 同 ト - 4 回 ト - -

Modelling a selected period

• Aim to model, for instance, years 2000-2010

Years

	Date	Date	Age	Date	Entry	Exit	Event
	of birth	of death	at death	of entry	time	time	indicator
А	1890.6	2001.1	110.5	2000.0	109.4	110.5	1
В	1894.2	2012.2	118.0	2000.0	105.8	116.8	0
С	1897.3	2005.4	108.1	2002.3	105.0	108.1	1
D	1902.0	2014.0	112.0	2007.0	105.0	109.0	0

Likelihood contributions

	Date	Date	Age	Date	Entry	Exit	Event
	of birth	of death	at death	of entry	time	time	indicator
Α	1890.6	2001.1	110.5	2000.0	109.4	110.5	1
В	1894.2	2012.2	118.0	2000.0	105.8	116.8	0
С	1897.3	2005.4	108.1	2002.3	105.0	108.1	1
D	1902.0	2014.0	112.0	2007.0	105.0	109.0	0

$$\ell_A = P(X = 110.5 \mid X > 109.4) = \frac{f(110.5)}{S(109.4)}$$
$$\ell_B = P(X > 116.8 \mid X > 105.8) = \frac{S(116.8)}{S(105.8)}$$
$$\ell_C = P(X = 108.1 \mid X > 105.0) = \frac{f(108.1)}{S(105.0)}$$

$$\ell_D = P(X > 109.0 \mid X > 105.0) = \frac{S(109.0)}{S(105.0)}$$

EAPS WG "Health, Morbidity and Mortality"

3

Likelihood contributions

	Date	Date	Age	Date	Entry	Exit	Event
	of birth	of death	at death	of entry	time	time	indicator
Α	1890.6	2001.1	110.5	2000.0	109.4	110.5	1
В	1894.2	2012.2	118.0	2000.0	105.8	116.8	0
С	1897.3	2005.4	108.1	2002.3	105.0	108.1	1
D	1902.0	2014.0	112.0	2007.0	105.0	109.0	0

$$\ell_A = P(X = 5.5 \mid X > 4.4) = \frac{f(5.5)}{S(4.4)}$$

$$\ell_B = P(X > 11.8 \mid X > 0.8) = \frac{S(11.8)}{S(0.8)}$$

$$\ell_C = P(X = 3.1) = f(4.1)$$

$$\ell_D = P(X > 4.0) = S(4.0)$$

• We can condition everything on surviving to age 105

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Modelling parametric models

- Two main options for the mortality hazard:
 - Constant : h(x) = a
 - Gompertz: $h(x) = a e^{bx}$

Modelling parametric models

- Two main options for the mortality hazard:
 - Constant : h(x) = a
 - Gompertz: $h(x) = a e^{bx}$

• Full dataset assuming **all** individuals are right-truncated:

Model	Parameters estimates		95% CI	Log-likelihood	AIC
Constant	а	0.61445	[0.60332, 0.62559]	-19795.56	39593.13
Comportz	а	0.57603	[0.56183, 0.59024]	10766 71	30537 42
Gompertz	b 0.04	0.04992	[0.03751, 0.06232]	-19700.71	59551.42
Modelling parametric models

ined 🎯 🖐 Inserm 👔

- Two main options for the mortality hazard:
 - Constant : h(x) = a
 - Gompertz: $h(x) = a e^{bx}$
- Full dataset assuming **all** individuals are right-truncated:

Model	Parameters estimates		95% CI	Log-likelihood	AIC
Constant	а	0.61445	[0.60332, 0.62559]	-19795.56	39593.13
Gompertz	а	0.57603	[0.56183, 0.59024]	10766 71	30537 42
	b	0.04992	[0.03751, 0.06232]	-19700.71	59551.42

• Full dataset assuming cohorts born before 1909 are extinct:

Model	Parameters estimates		95% CI	Log-likelihood	AIC
Constant	а	0.61523	[0.60414, 0.62633]	-19797.68	39597.36
Gompertz	а	0.57564	[0.56146, 0.58981]	10767.06	20520 12
	Ь	0.05063	[0.03835, 0.06291]	-19707.00	59550.15

• What if we extend our assumption beyond the 1909 cohort?

ヘロト 人間 ト イヨト イヨト

Including sex and/or cohort

• Check for sex differences in a proportional hazards setting:

$$h_i(x \mid \text{sex}_i, \text{cohort}_i) = h_0(x) \cdot \begin{cases} e^{\beta_{\text{sex}} \cdot \text{sex}_i} \\ e^{\beta_{\text{cohort}} \cdot \text{cohort}_i} \\ e^{\beta_{\text{sex}} \cdot \text{sex}_i + \beta_{\text{cohort}} \cdot \text{cohort}_i} \end{cases}$$

where the baseline $h_0(x)$ is either Constant or Gompertz

Including sex and/or cohort

• Check for sex differences in a proportional hazards setting:

$$h_i(x \mid \text{sex}_i, \text{cohort}_i) = h_0(x) \cdot \begin{cases} e^{\beta_{sex} \cdot sex_i} \\ e^{\beta_{cohort} \cdot \text{cohort}_i} \\ e^{\beta_{sex} \cdot sex_i + \beta_{cohort} \cdot \text{cohort}_i} \end{cases}$$

where the baseline $h_0(x)$ is either Constant or Gompertz

	Covariate(s)	β	Estimated	95% CI	AIC
Constant	sex	β_{sex}	0.17573	[0.11317, 0.23828]	39571.10
	cohort	β_{cohort}	-0.00201	[-0.00414, 0.00013]	39595.89
	sex+cohort	$\beta_{\textit{sex}}$	0.17563	[0.11271, 0.23855]	39569.51
		$\beta_{\textit{cohort}}$	-0.00205	[-0.00417, 0.00007]	
Gompertz	sex	β_{sex}	0.18511	[0.12291, 0.24730]	39508.02
	cohort	β_{cohort}	-0.00032	[-0.00255, 0.00190]	39540.04
	sex+cohort	β_{sex}	0.18492	[0.12288, 0.24695]	20500.04
		β_{cohort}	-0.00031	[-0.00174, 0.00112]	59509.94

A (10) N (10)

Including sex and/or cohort

• Check for sex differences in a proportional hazards setting:

$$h_i(x \mid \text{sex}_i, \text{cohort}_i) = h_0(x) \cdot \begin{cases} e^{\beta_{\text{sex}} \cdot \text{sex}_i} \\ e^{\beta_{\text{cohort}} \cdot \text{cohort}_i} \\ e^{\beta_{\text{sex}} \cdot \text{sex}_i + \beta_{\text{cohort}} \cdot \text{cohort}_i} \end{cases}$$

where the baseline $h_0(x)$ is either Constant or Gompertz

	Covariate(s)	β	Estimated	95% CI	AIC
Constant	sex	β_{sex}	0.17573	[0.11317, 0.23828]	39571.10
	cohort	$\beta_{\textit{cohort}}$	-0.00201	[-0.00414, 0.00013]	39595.89
	sex+cohort	β_{sex}	0.17563	[0.11271, 0.23855]	30560 51
		$\beta_{\textit{cohort}}$	-0.00205	[-0.00417, 0.00007]	39509.51
Gompertz	sex	β_{sex}	0.18511	[0.12291, 0.24730]	39508.02
	cohort	β_{cohort}	-0.00032	[-0.00255, 0.00190]	39540.04
	sex+cohort	β_{sex}	0.18492	[0.12288, 0.24695]	30500.04
		$\beta_{\textit{cohort}}$	-0.00031	[-0.00174, 0.00112]	39309.94

Gompertz baseline with only sex as a covariate selected by AIC

- 4 回 ト - 4 回 ト

ined (@) 🗄 Inserm (@)

Sex in a non-parametric setting: few equations india in the setting is the settin

• Let's vectorize deaths and exposures for females and males

$$\boldsymbol{y} = [\boldsymbol{y}_F, \boldsymbol{y}_M]'$$
 and $\boldsymbol{y} = [\boldsymbol{e}_F, \boldsymbol{e}_M]'$

• Model linear predictor: $\boldsymbol{\eta} = [\boldsymbol{\eta}_{F}, \boldsymbol{\eta}_{M}]' = \boldsymbol{X} \boldsymbol{eta}$, where

$$oldsymbol{X} = \left[egin{array}{cc} oldsymbol{I}_m & oldsymbol{0}_{m imes m} \ oldsymbol{I}_m & oldsymbol{I}_m \end{array}
ight] \qquad ext{and} \qquad oldsymbol{eta} = [oldsymbol{\eta}_{oldsymbol{F}}, \delta]'$$

• The iterative process to estimate eta is given by

$$ilde{oldsymbol{eta}} = (oldsymbol{X}' oldsymbol{W} oldsymbol{X} + oldsymbol{P})^{-1}oldsymbol{X}' oldsymbol{W} oldsymbol{z}$$

where $\pmb{z} = rac{\pmb{y} - \pmb{\mu} \odot \pmb{e}}{\pmb{\mu} \odot \pmb{e}} + \pmb{\eta}$ and $\pmb{W} = ext{diag}(\pmb{\mu} \odot \pmb{e})$

• The penalty term enforces smoothness of both η and δ :

$$oldsymbol{P} = \left[egin{array}{cc} \lambda_{oldsymbol{\eta}_F} oldsymbol{D}' oldsymbol{D} & \ & \lambda_{oldsymbol{\delta}} oldsymbol{D}' oldsymbol{D} \end{array}
ight]$$

EAPS WG "Health, Morbidity and Mortality"