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Introduction

Why is it important to know about mortality at extreme ages?

test possible evolutionary theories
determine whether a limit to human lifespan exists

it’s fun & captures public interest and media attention!

The risks of death above age 105 remain quite uncertain

scarcity of observations
often lack of completeness
low reliability of reported age

Since 20+ years a concerted effort to overcome these issues:

[www.supercentenarians.org]

individual data on deaths 105+, i.e. semi-supercentenarians
data from 13 countries with reliable civil registry
inclusion of all deaths occurring within a population
all deaths subjected to a strict age validation procedure

!! Recent challenge in obtaining new individual data !!
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Aim of the study

Research questions

1 map out time trends for semi-supercentenarians

2 unravel the conundrum of the mortality plateau

3 describe the age pattern of mortality without imposing any hypotheses

4 assess eventual sex and cohort differences in mortality above age 105

Data

We have recently received updated data from France
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14,467 Deaths 105+

Women 91% – Men 9%

Years: 1978-2023

Cohorts: 1870-1918
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Some descriptive facts: deaths by age
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Some descriptive facts: deaths by cohort
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Some descriptive facts: deaths by year
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Observation scheme in words

No matter which model we have in mind, we need to address
the observation scheme

Exact date of birth and date of death ⇒ no interval censoring

We need to deal with:

Left truncation: Individuals may enter the dataset only after
reaching age 105

Right censoring: Individuals may exit the dataset before dying
(this can occur when analyzing a selected period, not here)

Right Truncation: Only individuals who died by the end of
2023 are included

Potential bias from incomplete population representation:
Exclusion of individuals who may die after 2023, as they will
only be included once they pass away
In practice, for earlier cohorts, all deaths are observed, i.e.,
extinct cohorts
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Model the complete dataset
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A
B

C

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Right
truncation

A 1870.3 1980.0 109.7 1978.0 107.7 153.7
B 1887.4 1999.2 111.8 1992.4 105.0 136.6
C 1913.7 2022.0 108.3 2018.7 105.0 110.3
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of birth
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of death
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D 1915.5 ? ? 2020.5 105.0 –
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Likelihood contributions

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Right
truncation

A 1870.3 1980.0 109.7 1978.0 107.7 153.7
B 1887.4 1999.2 111.8 1992.4 105.0 136.6
C 1913.7 2022.0 108.3 2018.7 105.0 110.3

ℓA = P(X = 109.7 | X > 107.7,X ≤ 153.7) =
f (109.7)

S(107.7)− S(153.7)

ℓB = P(X = 111.8 | X > 105.0,X ≤ 136.6) =
f (111.8)

S(105)− S(136.6)

ℓC = P(X = 108.3 | X > 105.0,X ≤ 110.3) =
f (108.3)

S(105)− S(110.3)

We can safely assume that S(153.7) and S(136.6) are both equal to 0

We can condition everything on surviving to age 105
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Likelihood contributions
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Generalizing the assumption

All cohorts that reach at least age 115 by 2024 are extinct
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Generalizing the assumption
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Modelling parametric models

Two main options for the mortality hazard:

Constant : h(x) = a
Gompertz: h(x) = a ebx
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Effect of disregarding right truncation
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Including sex and/or cohort

Check for sex differences in a proportional hazards setting:

hi (x | sexi , cohorti ) = h0(x) ·


eβsex ·sexi

eβcohort ·cohorti

eβsex ·sexi+βcohort ·cohorti

where the baseline h0(x) is either Constant or Gompertz

Gompertz baseline with only sex as a covariate selected by AIC

Parameter Estimated 95% CI

a 0.56572 [0.55132, 0.58011]
b 0.05231 [0.04001, 0.06461]

βsex 0.18511 [0.12291, 0.24730]
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Piecewise constant hazard model in a nutshell

Split time axis into m + 1 pre-defined intervals: (τj−1, τj ]

In each interval the hazard is constant λj > 0

For each intervals Ij = (τj−1, τj ] we define:

eij time under observation of indiv. i during Ij

δij event indicator of indiv. i in Ij

For a given interval j (with fix covariate profile):

n∑
i

δij = yj (# of deaths)
n∑
i

eij = ej (total exposure time)

For a sequence of m+1 different intervals/ages: yj ∼ P(µj · ej)
Without any further assumptions: µ̂ = y

e , i.e. death rates

Issues:
estimated hazard function will be discontinuous
subjectivity in the choice of the breakpoints
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Piecewise constant hazard model in action
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Can we do better? Yes!

Recipe of estimate a non-parametric hazard:

Divide the age axis into many equally spaced intervals
Construct yj (observed events) and ej (exposure) in each interval
Assume yj ∼ P(µj · ej)
Impose smoothness by adding a penalty term

An equation for an iterative algorithm

η = (W + λD ′D)−1(y − µ⊙ e + η ⊙ µ⊙ e)

with W = diag(µ⊙ e) and D is a difference matrix

Key Advantages:

Number of intervals is irrelevant if m is large
Objective criteria (e.g., AIC/BIC) guide λ selection
Analytical uncertainty quantification
Prior knowledge is included in the model by adjusting the penalty
term (Constant vs. Gompertz)

Current issue: we cannot deal with right truncation
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Non-parametric hazard in action
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Including sex in a smooth setting

A “proportional hazard” framework with a smooth relative risk
function:

hF (x) = s(x)

hM(x) = hF (x) · eδ(x)

s(x) : non-parametric hazard
δ(x) : generic smooth function over age

δ(x) describes age-specific sex differences in log-mortality

eδ(x) can be interpreted as an age-specific relative risk

“Some” adjustments in the previous equation
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Log-mortality by sex
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δ : sex difference in log-mortality
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eδ : hazard sex ratio
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Concluding remarks

A sharp increase in the number of individuals over age 105

New French data confirms previous findings:

no evidence of a mortality plateau
continued sex disadvantage even at extreme ages
no significant cohort effect observed

The non-parametric approach

provides a mortality description without assumptions
reveals an increasing sex disadvantage from age 108

Outlook:

Quality check of individual data for England & Wales
Ongoing efforts to gather data for Spain, Italy, Netherlands and
Japan
Significant difficulties in accessing and publishing individual data:
exploring the use of validated, aggregated data
Address right truncation in non-parametric models
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Camarda et al.

Mortality above age 105
New data, new models

Thanks for your attention.
Comments and questions?
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Modelling a selected period

Aim to model, for instance, years 2000-2010
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A

B

C D

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Exit
time

Event
indicator

A 1890.6 2001.1 110.5 2000.0 109.4 110.5 1
B 1894.2 2012.2 118.0 2000.0 105.8 116.8 0
C 1897.3 2005.4 108.1 2002.3 105.0 108.1 1
D 1902.0 2014.0 112.0 2007.0 105.0 109.0 0

EAPS WG “Health, Morbidity and Mortality” Camarda et al. Mortality above age 105. New data, new models 20



Likelihood contributions

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Exit
time

Event
indicator

A 1890.6 2001.1 110.5 2000.0 109.4 110.5 1
B 1894.2 2012.2 118.0 2000.0 105.8 116.8 0
C 1897.3 2005.4 108.1 2002.3 105.0 108.1 1
D 1902.0 2014.0 112.0 2007.0 105.0 109.0 0

ℓA = P(X = 110.5 | X > 109.4) =
f (110.5)

S(109.4)

ℓB = P(X > 116.8 | X > 105.8) =
S(116.8)

S(105.8)

ℓC = P(X = 108.1 | X > 105.0) =
f (108.1)

S(105.0)

ℓD = P(X > 109.0 | X > 105.0) =
S(109.0)

S(105.0)

We can condition everything on surviving to age 105
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Likelihood contributions

Date
of birth

Date
of death

Age
at death

Date
of entry

Entry
time

Exit
time

Event
indicator

A 1890.6 2001.1 110.5 2000.0 109.4 110.5 1
B 1894.2 2012.2 118.0 2000.0 105.8 116.8 0
C 1897.3 2005.4 108.1 2002.3 105.0 108.1 1
D 1902.0 2014.0 112.0 2007.0 105.0 109.0 0

ℓA = P(X = 5.5 | X > 4.4) =
f (5.5)

S(4.4)

ℓB = P(X > 11.8 | X > 0.8) =
S(11.8)

S(0.8)

ℓC = P(X = 3.1) = f (4.1)

ℓD = P(X > 4.0) = S(4.0)

We can condition everything on surviving to age 105
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Modelling parametric models

Two main options for the mortality hazard:

Constant : h(x) = a
Gompertz: h(x) = a ebx

Full dataset assuming all individuals are right-truncated:

Model
Parameters
estimates

95% CI Log-likelihood AIC

Constant a 0.61445 [0.60332, 0.62559] -19795.56 39593.13

Gompertz
a 0.57603 [0.56183, 0.59024]

-19766.71 39537.42
b 0.04992 [0.03751, 0.06232]

Full dataset assuming cohorts born before 1909 are extinct:

Model
Parameters
estimates

95% CI Log-likelihood AIC

Constant a 0.61523 [0.60414, 0.62633] -19797.68 39597.36

Gompertz
a 0.57564 [0.56146, 0.58981]

-19767.06 39538.13
b 0.05063 [0.03835, 0.06291]

What if we extend our assumption beyond the 1909 cohort?
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Including sex and/or cohort

Check for sex differences in a proportional hazards setting:

hi (x | sexi , cohorti ) = h0(x) ·


eβsex ·sexi

eβcohort ·cohorti

eβsex ·sexi+βcohort ·cohorti

where the baseline h0(x) is either Constant or Gompertz

Covariate(s) β Estimated 95% CI AIC

sex βsex 0.17573 [ 0.11317, 0.23828] 39571.10
cohort βcohort -0.00201 [-0.00414, 0.00013] 39595.89

βsex 0.17563 [ 0.11271, 0.23855]

C
o
n
st
an

t

sex+cohort
βcohort -0.00205 [-0.00417, 0.00007]

39569.51

sex βsex 0.18511 [ 0.12291, 0.24730] 39508.02
cohort βcohort -0.00032 [-0.00255, 0.00190] 39540.04

βsex 0.18492 [ 0.12288, 0.24695]

G
o
m
p
er
tz

sex+cohort
βcohort -0.00031 [-0.00174, 0.00112]

39509.94

Gompertz baseline with only sex as a covariate selected by AIC
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Sex in a non-parametric setting: few equations

Let’s vectorize deaths and exposures for females and males

y = [yF , yM ]′ and y = [eF , eM ]′

Model linear predictor: η = [ηF ,ηM ]′ = Xβ, where

X =

[
Im 0m×m

Im Im

]
and β = [ηF , δ]

′

The iterative process to estimate β is given by

β̃ = (X ′ W X + P)−1X ′ W z

where z = y−µ⊙e
µ⊙e + η and W = diag(µ⊙ e)

The penalty term enforces smoothness of both η and δ:

P =

[
ληF

D ′D
λδD ′D

]
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