

Are e^{\dagger} and Keyfitz H measures of inequality of ages at death?

Magdalena Muszynska-Spielauer

Vienna Institute of Demography, ÖAW

Institute of Philosophy and Scientific Method, JKU Linz

Construct validity

Does a statistic captures the concept it claims to measure?

- candidates: e[†], Keyfitz H
- for construct: lifespan inequality in life table (LT) ages at death
- established measures: Gini Mean Difference (GMD), Theil index

We test conceptual and convergence validity.

Importance

- Realist view: LT lifespan inequality exists independent of the measurement, the measure aims to capture it.
- 2 Operationalization and quantification of concepts shapes knowledge we produce
- 3 Value-laden concepts require transparency of the measurement

Organization of the talk

- 1 Background information: previous approximations
- 2 Conceptual validity 1: e^{\dagger} as weighted deprivation
- $_3$ Conceptual 2: Deductive argument against e^{\dagger}
- 4 Conceptual 3: Keyfitz H as a measure of rectangularisation of survival curve
- 5 Convergent validity of e^\dagger to Gini Mean Deviation and Keyfitz H to Gini

$$e^{\dagger} = \int_{0}^{\omega} f(x) \, e(x) \, dx$$

Keyfitz
$$H = \frac{e^{\dagger}}{e(0)} = -\frac{1}{e(0)} \int_{0}^{\omega} \ell(x) \ln \ell(x) dx$$

for
$$l(0) = 1$$

Previous approximations

1. Hakkert (1987) showed that:

$$H \approx \frac{2CV^2}{CV^2 + 1},\tag{1}$$

CV is coefficient of variation.

It requires that, e.g., $e(0)^2 \approx 2\sigma^2$. For example, the higher e(0), the smaller σ^2 .

2. Shkolnikov et al. (2011) derived a formula for e^{\dagger} similar to Gini Mean Deviation (GMD)

GMD measures deprivation of years lived for deaths at x as compared to longer lives

$$GMD = \int_{x=0}^{\omega} \int_{y=x}^{\omega} (y-x)f(x)f(y) dy dx$$
 (2)

$$e^{\dagger} = \int_{x=0}^{\omega} \frac{1}{\ell(x)} \int_{y=x}^{\omega} (y-x) f(x) f(y) \, \mathrm{d}y \, \, \mathrm{d}x$$

young age at death x - > high deprivation - > low weight $\frac{1}{\ell(x)}$.

Conceptual validity 1: Can a summary measure of deprivation, e.g., poverty, be constructed with such weights?

Deductive argument, preliminaries

Cohorts in period life table

- Death cohort t: deaths by age at time t in a stationary population
- Cross-sectional cohort x, t: those aged x at t. followed to death
- Prevalent cohort: all cross-sectional cohorts at t

Deductive argument, preliminaries

In the cross-sectional cohort x, t, probability of survival to age y:

$$\ell(y,x) = \frac{\ell(y)}{\ell(x)} \tag{3}$$

density of deaths at age y:

$$f(y,x) = \mu(y)\ell(y,x) = \mu(y)\frac{\ell(y)}{\ell(x)} = \frac{f(y)}{\ell(x)}$$

e^{\dagger} for death cohort

$$e^{\dagger} = \int_{x=0}^{\omega} \int_{y=x}^{\omega} (y-x)f(x)\frac{f(y)}{\ell(x)} \,\mathrm{d}y \,\mathrm{d}x =$$
$$\int_{x=0}^{\omega} \int_{y=x}^{\omega} (y-x)f(x)f(y,x) \,\mathrm{d}y \,\mathrm{d}x$$

Construct validity 2: Deductive argument

A statistic of lifespan inequality compares ages at death of individuals within the same cohort.

 e^{\dagger} measures the average years of life deprivation of an individual in a death cohort to an **external reference**, i.e., ages at death of individuals in a corresponding cross-sectional cohort.

 e^\dagger is not a measure of inequality of life table ages at death.

Construct validity 3: Keyfitz H vs Theil index

Relative entropy, or Kullback–Leibler divergence, compares a study probability density distribution (G) to a benchmark distribution (Z)

$$D(G||Z) = \int_{x=0}^{\omega} g(x) \ln \frac{g(x)}{z(x)} dx$$

Theil index is a relative entropy measure of divergence of distribution of **years** lived per individual to equal number of years lived per individual.

$$T = D(G||Z) = \int_{x=0}^{\omega} \frac{x}{e(0)} \ln\left(\frac{x}{e(0)}\right) f(x) dx$$

Keyfitz H vs Theil

Kefitz H measures convergence of the distribution of **years lived per year of age** to equal number of years lived when everybody dies at max age.

$$H = \ln \frac{\omega}{e(0)} - \int_0^\omega w(x) \ln \frac{w(x)}{u(x)} dx = \ln \frac{\omega}{e(0)} - D(W||U),$$

where W is the distribution of years across x: $w(x) = \frac{\ell(x)}{e(0)}$ U - fully rectangular distribution of years (apart from $x = \omega$), $\ell(x) = 1$ In $\frac{\omega}{e(0)}$ is mortality shift and -D(W||U) is level of compression

Convergent validity

Empirical tools for testing convergence between e^{\dagger} and GMD:

- Correlation: e^{\dagger} and GMD:0.96, H and Gini:0.99, α < 0.01
- Reliability: Intraclass correlation coefficient: ICC ∈ [0.9;0.92] excellent reliability (scale in Koo and Li (2016))
- Agreement: Bland-Altman limits of agreement: agreement is high except at very low e(0)
- Threshold age is consistently higher for e^{\dagger} than for GMD and for Keyfitz H than Gini; the gap narrows with higher e(0),

Data: United Nations Model Life tables (2024)

Summary

 e^\dagger and Keyfitz H have not passed the test for concept validity for measures of inequality in LT ages at death

- e^{\dagger} puts higher value on short lives
- ullet e^\dagger measures deprivation to a benchmark outside of the study population
- Keyfitz H measures extent of rectangularisation
- ullet the gap between threshold ages in e^\dagger and GMD can be large

References

- Gakidou, E. E., C. J. Murray, and J. Frenk (2000). Defining and measuring health inequality: an approach based on the distribution of health expectancy. *Bulletin of the world health organization 78*, 42–54.
- Hakkert, R. (1987). Life table transformations and inequality measures: some noteworthy formal relationships. *Demography*, 615–622.
- Koo, T. K. and M. Y. Li (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. *Journal of chiropractic medicine* 15(2), 155–163.
- Shkolnikov, V. M., E. M. Andreev, Z. Zhang, J. Oeppen, and J. W. Vaupel (2011). Losses of expected lifetime in the United States and other developed countries: Methods and empirical analyses. *Demography 48*(1), 211–239.
- United Nations Model Life tables (2024).
 - https://www.un.org/development/desa/pd/data/model-life-tables (data downloaded on 30.01.2024).
- Wilmoth, J. R. and S. Horiuchi (1999). Rectangularization revisited: Variability of age at death within human populations. *Demography 36*(4), 475–495.

Classification of lifespan inequality measures

Group	Example Measure	Interpretation
Range Measures	Interquantile Range	Spread of the middle 50%
Inter-individual differences	Gini Mean Difference	Mean difference between inidviduals in years lived
Individual/mean differences	Mean Average Deviation	Mean difference in years lived between individual and life expectancy
Entropy-based measures	Theil's index	Divergence from equal distribution of years of life between individuals

Source: Inequality measures classification from (Gakidou et al., 2000; Wilmoth and Horiuchi, 1999).

Figure: Relative gap H - approximation of H

Data source: United Nations Model Life tables (2024).

Figure: Ranking, Males, e(0)=90

Data source: United Nations Model Life tables (2024).

Figure: Bland-Altman with 1.96 SD limits of agreement, e^{\dagger} vs GMD

Data source: United Nations Model Life tables (2024).

Figure: Bland-Altman with 1.96 SD limits of agreement, H vs Gini

Figure: Bland-Altman with 1.96 SD limits of agreement: left, H vs Gini; right, H vs Approximation.

Difference in threshold ages of e^\dagger - GMD

Difference in threshold ages of H - Gini

